北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2011, Vol. 34 ›› Issue (2): 58-62.doi: 10.13190/jbupt.201102.58.038

• 论文 • 上一篇    下一篇

基于PSO模糊神经元的异构无线网络接入选择

石文孝,范绍帅,王柟,赵嵩   

  1. 吉林大学 通信工程学院, 长春 130012
  • 收稿日期:2010-06-02 修回日期:2010-12-11 出版日期:2011-04-30 发布日期:2011-04-28
  • 通讯作者: 石文孝 E-mail:shiwenxiao@vip.sina.com;swx@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(60972028)

A PSOFuzzy Neuron Based Access Selection in Heterogeneous Wireless Networks

  • Received:2010-06-02 Revised:2010-12-11 Online:2011-04-30 Published:2011-04-28
  • Supported by:

    The National Natural Science Foundation of China

摘要:

采用模糊逻辑和神经网络技术进行异构无线网络接入选择的方法未合理考虑网络负载状况,为此提出一种对网络负载具有很好动态适应性的基于粒子群优化(PSO)模糊神经元的接入选择方法. 该方法将可接入网络的接入阻塞率相等作为模糊神经元参数学习的目标,并结合具有全局寻优能力的PSO算法设定参数初值,提高了参数学习精度. 仿真结果表明,该方法能有效实现网络间负载均衡,相对于最大负载均衡算法可降低网络的接入阻塞率.

关键词: 异构无线网络, 接入选择, 模糊神经元, 粒子群优化, 负载均衡

Abstract:

Aiming at solving the problem that access selection method based on fuzzy logic and neural network technology for heterogeneous wireless network did not consider network load conditions reasonably, a particle swarm optimization (PSO)fuzzy neuron based access selection algorithm with dynamic adaptability for network load is proposed. This method set equal access blocking rate as a goal for fuzzy neuron parameter learning, and combined with PSO algorithm with global optimization capability to set initial parameters value, so as to improve the precision of parameter learning. Simulations show that the proposed algorithm can balance the load among networks effectively, and reduce the access blocking rate compared with maximum load balance algorithm.

Key words: heterogeneous wireless networks, access selection, fuzzy neuron, particle swarm optimization, load balance

中图分类号: